Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We propose a measurement of laser-induced vacuum birefringence through the use of pulsed lasers coupled to femtosecond optical enhancement cavities. This measurement technique features cavity-enhanced pump and probe pulses, as well as an independent control pulse. The control pulse allows for a differential measurement where the final signal is obtained using high-frequency lock-in detection, greatly mitigating time-dependent cavity birefringence as an important and possibly prohibitive systematic effect. In addition, the method features the economical use of laser power and results in a relatively simple experimental setup.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available February 5, 2026
- 
            It is usually assumed that interaction potentials, in general, and atom-surface potential, in particular, can be expressed in terms of an expansion involving integer powers of the distance between the two interacting objects. Here, we show that, in the short-range expansion of the interaction potential of a neutral atom and a dielectric surface, logarithms of the atom-wall distance appear. These logarithms are accompanied with logarithmic sums over virtual excitations of the atom interacting with the surface in analogy to Bethe logarithms in quantum electrodynamics. We verify the presence of the logarithmic terms in the short-range expansion using a model problem with realistic parameters. By contrast, in the long-range expansion of the atom-surface potential, no logarithmic terms appear, and the interaction potential can be described by an expansion in inverse integer powers of the atom-wall distance. Several subleading terms in the large-distance expansion are obtained as a byproduct of our investigations. Our findings explain why the use of simple interpolating rational functions for the description of the atom-wall interaction in the intermediate regions leads to significant deviations from exact formulas.more » « less
- 
            We investigate the particle–antiparticle symmetry of the gravitationally coupled Dirac equation, both on the basis of the gravitational central-field problem and in general curved space–time backgrounds. First, we investigate the central-field problem with the help of a Foldy–Wouthuysen transformation. This disentangles the particle from the antiparticle solutions, and leads to a “matching relation” of the inertial and the gravitational mass, which is valid for both particles as well as antiparticles. Second, we supplement this derivation by a general investigation of the behavior of the gravitationally coupled Dirac equation under the discrete symmetry of charge conjugation, which is tantamount to a particle[Formula: see text]antiparticle transformation. Limitations of the Einstein equivalence principle due to quantum fluctuations are discussed. In quantum mechanics, the question of where and when in the Universe an experiment is being performed can only be answered up to the limitations implied by Heisenberg’s Uncertainty Principle, questioning an assumption made in the original formulation of the Einstein equivalence principle. Furthermore, at some level of accuracy, it becomes impossible to separate nongravitational from gravitational experiments, leading to further limitations.more » « less
- 
            Conceivable Lorentz-violating effects in the neutrino sector remain a research area of great general interest, as they touch upon the very foundations on which the Standard Model and our general understanding of fundamental interactions are laid. Here, we investigate the relation of Lorentz violation in the neutrino sector in light of the fact that neutrinos and the corresponding left-handed charged leptons form [Formula: see text] doublets under the electroweak gauge group. Lorentz-violating effects thus cannot be fully separated from questions related to gauge invariance. The model dependence of the effective interaction Lagrangians used in various recent investigations is explored with a special emphasis on neutrino splitting, otherwise known as the neutrino-pair Cerenkov radiation and vacuum-pair emission (electron–positron-pair Cerenkov radiation). We highlight two scenarios in which Lorentz-violating effects do not necessarily also break electroweak gauge invariance. The first of these involves a restricted set of gauge transformations, a subgroup of [Formula: see text], while in the second where differential Lorentz violation is exclusively introduced by the mixing of the neutrino flavor and mass eigenstates. Our study culminates in a model which fully preserves [Formula: see text] gauge invariance, involves flavor-dependent Lorentz-breaking parameters, and still allows for Cerenkov-type decays to proceed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
